top of page

ARTICLE

Spintronics: Researchers show how to make non-magnetic materials magnetic


Atomic-resolution high-angle annular dark-field STEM image of a B-site cation-deficient LAO/STO sample, projected along the <100> direction. The interface is denoted by a dashed line. c Ti L2,3-edge EELS spectra for the LAO/STO heterostructure, collected from each layer position and denoted by the yellow circles in b. @ Martin-Luther-Universität Halle-Wittenberg

A complex process can modify non-magnetic oxide materials in such a way to make them magnetic. The basis for this new phenomenon is controlled layer-by-layer growth of each material. An international research team with researchers from Martin Luther University Halle-Wittenberg (MLU) reported on their unexpected findings in the journal "Nature Communications".


In solid-state physics, oxide layers only a few nanometres thick are known to form a so-called two-dimensional electron gas. These thin layers, separated from one another, are transparent and electrically insulating materials. However, when one thin layer grows on top of the other, a conductive area forms under certain conditions at the interface, which has a metallic shine. "Normally this system remains non-magnetic," says Professor Ingrid Mertig from the Institute of Physics at MLU. The research team has succeeded in controlling conditions during layer growth so that vacancies are created in the atomic layers near the interface. These are later filled in by other atoms from adjoining atomic layers.

The theoretical calculations and explanations for this newly discovered phenomenon were made by Ingrid Mertig’s team of physicists. The method was then experimentally tested by several research groups throughout Europe - including a group led by Professor Kathrin Dörr from MLU. They were able to prove the magnetism in the materials. "This combination of computer simulations and experiments enabled us to decipher the complex mechanism responsible for the development of magnetism," explains Mertig. 

The study builds upon the work of the former Collaborative Research Centre 762 "Functionality of Oxide Interfaces" at MLU, which was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) from 2008 to 2019.  Reference: The emergence of magnetic ordering at complex oxide interfaces tuned by defects

D.-S. Park, A. D. Rata, I. V. Maznichenko, S. Ostanin, Y. L. Gan, S. Agrestini, G. J. Rees, M. Walker, J. Li, J. Herrero-Martin, G. Singh, Z. Luo, A. Bhatnagar, Y. Z. Chen, V. Tileli, P. Muralt, A. Kalaboukhov, I. Mertig, K. Dörr, A. Ernst & N. Pryds Published: 20 July 2020

doi: 10.1038/s41467-020-17377-0 Contact information:

Prof. Dr. Ingrid Mertig

Institut für Physik

+49 345 55-25430


Comments


  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

Nov 11, 2024

Munich, Germany

EPIC Technology Meeting on Microelectronics and Photonics

Nov 12, 2024

Munich, Germany

electronica 2024

Nov 12, 2024

Munich, Germany

SEMICON Europa 2024

bottom of page