top of page

ARTICLE

An easy-to-use technique to measure the hydrophobicity of micro- and nanoparticle


Easy-to-use optical method to quantitatively determine the surface free energy of micro- and nanoparticles. @ American Chemical Society

The scientific and industrial communities who work with micro- and nanoparticles continue to labor with the challenge of effective particle dispersion. Most particles that disperse in liquids aggregate rapidly, and eventually precipitate, thereby separating from the liquid phase. While it is commonly accepted that the hydrophobicity of particles-- how quickly water repels off a surface--determines their dispersion and aggregation potential, there has been no easy-to-use method to quantitatively determine the hydrophobicity of these tiny particles.


Yi Zuo, University of Hawaii at Manoa College of Engineering and pediatrics professor, has invented a groundbreaking method that allows for easy determination of the surface free energy of particles as a quantitative measure of particle hydrophobicity. The research "An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles," was published in the October 2019 issue of the scientific journal Analytical Chemistry and showcased on the cover.


"The major advantage of this method resides in its simplicity," said Zuo. "For the first time, the scientific and industrial community will have access to an inexpensive and easy-to-use method for quantitatively determining the hydrophobicity of particulate matter. Our method relies on a novel measuring principle and common laboratory procedures and equipment such as pipetting and visible-light spectroscopy."


Zuo has demonstrated the feasibility of this method in determining the surface free energy of various micro- and nanoparticles, such as carbon nanotubes, graphene and polystyrene particles.


The study may have a far-reaching implication for many scientific and industrial applications and disciplines that involve particulate matter. "For example, our method can be used to quantify the hydrophobicity of nanoparticles, which is of crucial importance for the study of potential health risks and biomedical applications of nanomaterials." Zuo said. "It may also find application in microbial science because the surface free energy of bacterial cells determines the cellular adhesion and proliferation in biofilms."


An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles

Zhenle Cao, Shannon Nicole Tsai, Yi Y. Zuo

Analytical Chemistry 2019, 91, 20, 12819-12826


Contact information:

Yi Zuo

Professor in the College of Engineering at the University of Hawaiʻi at Mānoa and adjunct professor of pediatrics at the John A. Burns School of Medicine

Phone: (808) 956-9650


University of Hawaiʻi

Comments


  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

Dec 2, 2024

Melbourne VIC, Australia

The Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD)

Dec 4, 2024

Adelaide SA, Australia

CAMS2024

Dec 11, 2024

Ho Chi Minh City, Vietnam

ASEAN Ceramics Vietnam 2024

bottom of page