top of page

ARTICLE

Non-flammable and paper-like graphene membrane that can be used in large-scale production



Graphene oxide (GO), a common intermediate for making graphene-like materials from graphite, was recently found to possess an explosive fire hazard that can jeopardize the GO’s large-scale production and wide applications. This work reports a simple and facile method to cross-link the GO with Al3+ cations, in one step, into a freestanding flexible membrane. This inorganic membrane resists in-air burning on an open flame, at which non-cross-linked GO was burnt out within ∼5 s. All characterization data suggested that the in situ “epoxy ring-opening” reactions on the GO surface facilitated the cross-linking, which elucidated a new mechanism for the generalized inorganic polymerization. With the much improved thermal and water stabilities, the cross-linked GO film can help to advance high-temperature fuel cells, electronic packaging, etc. as one of the long-sought inorganic polymers known to date.

University of Arkansas researchers have discovered a simple and scalable method for turning graphene oxide into a non-flammable and paper-like graphene membrane that can be used in large-scale production.

"Due to their mechanical strength and excellent charge and heat conductivities, graphene-based materials have generated enormous excitement," said Ryan Tian, associate professor of inorganic chemistry in the J. William Fulbright College of Arts and Sciences. "But high flammability jeopardizes the material's promise for large-scale manufacturing and wide applications."

Graphene's extremely high flammability has been an obstacle to further development and commercialization. However, this new discovery makes it possible to mass-produce graphene and graphene membranes to improve a host of products, from fuel cells to solar cells to supercapacitors and sensors. Tian has a provisional patent for this new discovery.

Using metal ions with three or more positive charges, researchers in Tian's laboratory bonded graphene-oxide flakes into a transparent membrane. This new form of carbon-polymer sheet is flexible, nontoxic and mechanically strong, in addition to being non-flammable.

Further testing of the material suggested that crosslinking, or bonding, using transition metals and rare-earth metals, caused the graphene oxide to possess new semiconducting, magnetic and optical properties.

For the past decade, scientists have focused on graphene, a two-dimensional material that is a single atom in thickness, because it is one of the strongest, lightest and most conductive materials known. For these reasons, graphene and similar two-dimensional materials hold great potential to substitute for traditional semiconductors. Graphene oxide is a common intermediate for graphene and graphene-derived materials made from graphite, which is a crystalline form of carbon.

The research was conducted by Hulusi Turgut, doctoral student in the U of A microelectronics-photonics program and the Institute for Nanoscience and Engineering. Part of the material's characterization was done by Fengjiao Yu and Wuzong Zhou at the University of St. Andrews in the United Kingdom.

The researchers' findings were published in The Journal of Physical Chemistry.

Multivalent Cation Cross-Linking Suppresses Highly Energetic Graphene Oxide’s Flammability Hulusi Turgut, Z. Ryan Tian, Fengjiao Yu, and Wuzong Zhou J. Phys. Chem. C, 2017, 121 (10), pp 5829–5835 DOI: 10.1021/acs.jpcc.6b13043

  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

Dec 11, 2024

Ho Chi Minh City, Vietnam

ASEAN Ceramics Vietnam 2024

Dec 11, 2024

Noosa Heads QLD, Australia

EQUS Annual Workshop 2024

Dec 12, 2024

The Spectrum of Stem Cell-Based Neuronal Models and Their Fit for Purpose (Online)

bottom of page